Numerical simulation of nano scanning in intermittent-contact mode AFM under Q control.
نویسندگان
چکیده
We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of the whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of the elastic modulus of the sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in an attractive regime using soft cantilevers with high effective Q factor (Q(eff)) results in a better image quality. We then demonstrate the trade-off in setting Q(eff) of the probe in Q control: low values of Q(eff) cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantilever to the rapid changes in surface profile. Finally, we show that it is possible to achieve higher scan speeds without causing an increase in the tapping forces using adaptive Q control (AQC), in which the Q factor of the probe is changed instantaneously depending on the magnitude of the error signal in oscillation amplitude. The scan performance of AQC is quantitatively compared to that of standard Q control using iso-error curves obtained from numerical simulations first and then the results are validated through scan experiments performed using a physical set-up.
منابع مشابه
Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory.
In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is util...
متن کاملFrequency and force modulation atomic force microscopy: low-impact tapping-mode imaging without bistability
Since the 1980s, atomic force microscopy (AFM) has rapidly developed into a versatile, high-resolution characterization technique, available in a variety of imaging modes. Within intermittent-contact tapping-mode, imaging bistability and sample mechanical damage continue to be two of the most important challenges faced daily by AFM users. Recently, a new double-control-loop tapping-mode imaging...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملElectrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe.
We utilize a multifunctional atomic force microscope (AFM) cantilever applying highly localized temperature and electric fields to interrogate transport in single-wall carbon nanotube field-effect transistors (CNTFETs). The probe can be operated either in contact with the CNT, in intermittent contact, or as a Kelvin probe, and can independently control the electric field, mechanical force, and ...
متن کاملSurface Characterization of Viscoelastic Materials through Spectral Intermittent Contact Atomic Force Microscopy
Title of Document: SURFACE CHARACTERIZATION OF VISCOELASTIC MATERIALS THROUGH SPECTRAL INTERMITTENT CONTACT ATOMIC FORCE MICROSCOPY Jeffrey Charles Williams, Master of Science, 2012 Directed By: Assistant Professor Santiago Solares Department of Mechanical Engineering The ability to recover material properties at the atomic scale has been the ongoing objective of the Atomic Force Microscope (AF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2008